

Harnessing the Upper Portion of the Electromagnetic Spectrum for the Internet of Things

Bill Deal

2020 IEEE Radio and Wireless Symposium San Antonio, TX, USA

Outline

- Introduction and Motivation
- High Frequency Technology Overview
- Existing Applications at Short Millimeter Wave and Submillimeter Wave
- Communications at Short Millimeter Wave and Submillimeter Wave
- Conclusion

Introduction

- The Internet of Things will need higher bandwidth and better connectivity
- Improvements in space technologies will be needed help to build a better backbone
 - High data-rate LEO-LEO Crosslinks
 - LEO-Aircraft Links
 - Air-to-Air Links
- Leveraging the upper portion of the millimeter wave spectrum may enable this

"First Demonstration of Amplification at 1 THz Using 25-nm InP High Electron Mobility Transistor Process" (IEEE EDL, 2015)

Introduction

- Military / Science applications tend to pull technology
- Millimeter wave systems have existed in space for many years
- Today will be talking about technologies operating above 100 GHz, and technology "pulls"

mm-wave satcom

NOAA Advanced Technology Microwave Sounder 23-183 GHz

2020 IEEE Radio and Wireless Symposium San Antonio, TX, USA

High Frequency Bands

Atmospheric Attenuation

Attenuation - dB/km

2020 IEEE Radio and Wireless Symposium Approved for Public Release; Distribution Unimited Distan 28851; NGAS Case 17-2377

Introduction

- Millimeter Wave Ranges from 30 300 GHz
- We usually think of the lower portion, but----
- The FCC has frequency allocations from 100 - 300 GHz!

100 – 300 GHz Portion of FCC Allocation Chart

- LEO-to-LEO Crosslinks Possible
- High Data Rate Space to Upper Atmosphere may be possible

2020 IEEE Radio and Wireless Symposium San Antonio, TX, USA

Slide 7

Absorption Lines

Out of the Atmosphere

MM-Wave Crosslink Benefit:

- Robust, mature microwaves
- Well-understood pointing-and-tracking
- RF Comm infrastructure (backend, mod schemes)

Disadvantage:

- Large Aperture (6 ft for Satcom)
- Limited Bandwidth

Laser Crosslink Benefit:

- Smaller Aperture (wavelength)
- High instantaneous Bandwidth <u>Disadvantage:</u>
- Maturity
- Modulation schemes
- Pointing-and-tracking

2020 IEEE Radio and Wireless Symposium Approved for Public Release; Distribution Unimited Distan 28851; NGAS Case 17-2377

Wavelength Comparison for Leo-to-Leo Crosslink

Metric	60-GHz	G-Band	Optical
Bandwidth	Moderate	High	Very High
Size Weight Power	Large Antenna Highest Highest	Moderate Antenna Medium Lowest w/ TWT	Small Aperture Lowest Medium
Pointing and Tracking	Easiest	Moderate	This is the hard part
Cost Now	Lowest, but large apertures make payload large (payload and launch costs)	High, but small apertures will fit on small satellite	Most components are cheap, but pointing and tracking makes it expensive
Cost at Volume	Hard to get around aperture and payload size	Similar technology and manufacturing as microwave	Should be cheap if pointing-and- tracking can be addressed
Maturity	High	Low, ground based demos	Moderate

EEE

High Frequency Application Matrix

	Description	Application Maturity	Frequencies of Interest	Customer Base
Radioastronomy	Radio-telescopes look deep into space	MatureCryogenic SIS receivers		Science
Atmospheric Sensing	Monitor weather patterns from space	 Well-established GaAs Schottky receivers LNA based below 118 GHz 	 118 GHz, O2 183 GHz, H2O 325 GHz, H2O 380 GHz, H2O 425 GHz, O2 474 GHz, H2O 488 GHz, H2O 556 GHz, H2O 620 GHz, H2O 	Civil/DoD/Scie nce
Imaging/Security	 Use SMMW to "image" concealed weapons Better resolution, and stand-off imaging 	 Successful demonstrations have been performed in industry/academia 	 140 GHz 235 GHz 340 GHz 670 GHz 	Civil/DoD
Point-to-Point Communications	• Take advantage of large instantaneous bandwidth for broadband point-to-point link	 Successful demonstrations at 140, 220, 340 GHz 	 140 GHz 235 GHz 340 GHz 670 GHz 	Civil/DoD/ Commercial
Wireless Communications	THz WiFi would enable massive instantaneous bandwidth	Initial Demonstrations	 140 GHz 235 GHz 340 GHz 670 GHz 	Commercial/ Consumer
Chemical Spectroscopy	 Use SMMW "signatures" to detect explosives or biological weapons 	Demonstrations	 Depends on the chemical sample "Smearing" of signature is hurdle 	Civil/DoD
Medical	Use THz radiation to treat medical conditions	Demonstrated on tissue samples	• 670 GHz	Commercial

EEE

2020 IEEE Radio and Wireless Symposium Approved for public release, distribution infinited, Oase #13-2339, dated 12/3/2013.

InP Terahertz Transistors

 Both InP HBT and HEMT have pushed past 1 THz fMAX

THz InP HEMT Scaling

- Transistor speed improvements come from:
 - Gate scaling
 - Channel design
 - Device design
- Significant benefits come from channel and device design
- Device continues to scale nicely
- Upward f_{MAX} limit not yet reached.

Cascaded 1 THz Amplifiers

- Cascaded four amplifiers together
- Measured 16 dB gain @ THz
- Measured 25 dB gain @976 GHz

Measured S-parameters

Approved for Public Release Distribution Onlinited. Dist Ar Lase 26557; NGAS Case 16-0990

LNA Benchmarks

Mixer DSB Noise Performance

Q: How Do InP HEMT LNA-based Front Ends Compare to Mixer-based Front Ends?

- InP HEMT LNA sensitivity approaches that of DSB mixers.
- InP HEMT LNA is superior to that of mixers operated in SSB mode.
- This extends to cryogenic operation.

	Ambient Temperature [K]	Noise Figure [dB]	Noise Temperatur e [K]
HEMT	270 25	9.6 3.8	2355 400
GaAs Schottky	270	9.4 DSB (12.4 SSB*)	2236 DSB (4750 SSB*)
HEB	Cryo	2.7 DSB (5.7 SSB*)	250 DSB (788 SSB*)
SIS	4	1.3 DSB (4.3 SSB*)	100 DSB (491 SSB*)
SOA			

SOA

	Ambient	Noise	Noise
	Temperature	Figure	Temperature
	[K]	[dB]	[K]
HEMT	270	12	3361
GaAs	270	9.8 DSB	DSB 2500
Schottky		(12.8 SSB*)	(5236 SSB*)

*Performance estimated from plot. SSB is calculated from DSB by adding 3 dB $\,$

2020 IEEE Radio and Wireless Symposium Approved for Public Release: Distribution Unlimited. DISTAR 24602; NGAS Case 15-0932

How Good are THz PA's?

Q: How Do InP HEMT PA's Compare to SOA?

- InP HEMT PA Output Power is higher than GaAs Schottky Multiplier output at room temperature.
- Multiplier results includes power combining
- DC efficiency is also significantly improved with power amplification

Room Temperature Multiplier Performance

Approved for public release Satisfication and Wireless Symposium

Technology Overview

Amplifiers demonstrated to 1 THz 15 10 25 nm InP HEMT Gain (dB) 5 R3C5 R3C6 0 -R4C5 1.5 THz fMAX - R5C5 R6C5 -10 0.8 0.85 0.9 0.95 1 1.05 1.1 0.7 THz fT Frequency (THz)

InP Integrated Circuits are Progressing Rapidly

Receivers and Transmitters Demonstrated to 850 GHz

EEE

2020 IEEE Radio and Wireless Symposium San Antonio, TX, USA

Packaging Approach

Passive TMIC Technology: High compaction. HEMT to HEMT spacing of 10 μm.

Integration Challenges:
Need wide chip for circuit, but narrow for transition
Cross-shaped chip

2020 IEEE Radio and Wireless Symposium Approved for Public Release; Distribution Unimited Distan 28851; NGAS Case 17-2377

670 GHz Receiver Data

- ~25 dB Gain and 10 dB NF
- Bandwidth ~ 20 GHz
- Limited by IF mixer bandwidth

Approved for public State: Ost R 13/09, NGT X 1209 State 6/6/17.

Combined Power Amplifier Results

12

4

-4

660

665

0 00 0

Pin, Pout [dBm]

- Combined 6 PA TMICs (2 driving 4)
- Meets requirement of 6 dBm (4 mW)
- 8.9 dBm (7.8 mW) maximum output power

7.8 mW Peak Power at 665 GHz with InP HEMT

2020 IEEE Radio and Wireless Symposium San Antonio, TX, USA

Pout

670

Frequency [GHz]

Slide 19

10

Gain

675

Power Gain [dB]

TWT (NGC, Rolling Meadows)

- Peak power of 200 mW
- >100 mW available at demo frequency (666 GHz)
- Tuneable with voltage
- Integrated with frequency converter (exciter and SSPA) and 10 cm reflector

TWT with exciter

<image>

2020 IEEE Radio and Wireless Symposium Approved for Public Release; Distribution imited Distan 28851; NGAS Case 17-2377

Reflector and Window

Astronomers using ALMA have obtained close-up view of material streaming away from a newborn star by looking at the glow coming from carbon monoxide molecules in an object called Herbig-Haro 46/47

"Traditional" Applications: Weather Forecasting and **Earth Science**

270 260

250

240

230

210

SSMIS, 85 GHz Brightness Temperature **Channel Sensitive to Temperature**

Microwave sensor measures the warm eye (region of subsidence), eye walls and rain bands in the hurricane cold core

TWICE

- "TWICE" is funded by NASA ESTO
 - CSU (Steve Reising, PI)
 - JPL and Northrop
- Multi-band radiometer in 6U CubeSat payload

Subsystem	Mass (kg)	Power (W	
118-183 GHz Sounder	0.55	4.53	
240 GHz & 310 GHz Radiometers	0.1	0.35	
380 GHz Sounder	0.3	2.31	
670 GHz Radiometers (H&V)	0.09	0.54	
Back-end Board	0.13	0.73	
Power Regulation Board	0.13	3.00	
Optics	0.40	-	
Calibration Target/Reflector	0.71	-	
Scanning Motor	0.33	1.00	
Totals	2.74	12.46	

EEE

- Three frequency bands in one Gregorian quasi-optical subsystem
- Conical scanning with 9.5-cm primary reflector
- Cold sky and ambient target calibration each scan (60 rpm)

TWICE 670 GHz Receiver

670 GHz Detector (Internal View)

- Small receiver with ~220 mW DC Power Consumption
- 11.7 dB noise figure
- Direct detection
- Chopped to mitigate 1/f noise

EEE

2020 IEEE Radio and Wireless Symposium San Antonio, TX, USA

THz Communications

- 60 GHz is typical RF crosslink frequency (oxygen)
- Could scale to 190 GHz (water)
- But, how far could we go?
- Could we scale by 10x?

$$\frac{P_{rec}}{P_{tran}} = G_{tran} * Grec * (\lambda/4\pi r)^2$$
Friis
Transmission
Formula

$$G \propto \left(\frac{d}{\lambda}\right)^2$$
Small Wavelength

$$T_{rec} \sim 1/f$$
Sensitivity Degrades
Power Drops

What would it take to do a 670 GHz Link?

P_{trans} ~(1/f)³

2020 IEEE Radio and Wireless Symposium Approved for Public Release; Sistribution in it and public Release; Sistribution in it and public Release 17-2377

Quickly

Link Calculations

- Terahertz high data rate communications now proven at short range in atmosphere
- Satellite crosslinks may be ideal application for this technology
 - Low probability of intercept
 - Supports high level modulation rates
 - Supports LEO-LEO links with 30 cm aperture

2020 IEEE Radio and Wireless Symposium Approved for Public Release; Distribution Unimited Distan 28851; NGAS Case 17-2377

THz Data Link Overview

- Demo took place in Rolling Meadows, Illinois
- Week of March 33rd 2017
- Two Demos:
 - "Short Range": 250 M
 - "Long Range": 600 M

2020 IEEE Radio and Wireless Symposium Approved for Public Release; Distribution Unimited Distan 28851; NGAS Case 17-2377

Parameter		Unit	Notes
Transmit Frequency	666	GHz	
Modulation & Coding	16-APSK r=7/8		
Data Rate	25	Gb/s	
Net Transmit Power	20	dBm	
Backoff	-1.8	dB	
Losses	-1	dB	
Net Transmit Gain	55.9	dBi	
Aperture Diameter	10.00	cm	
Pointing Loss	-0.5	dB	
EIRP	75.6	dBmi	
Path Loss	-144.5	dB	
Range	600.0	m	Long range test
Atm Loss	-5.8	dB	15% humidity
Total Channel Losses	-150	dB	
RSSI	-74.6	dBmi	
Net Receive Gain	54.9	dBi	
Aperture Diameter	10.00	cm	
Pointing Loss	-0.5	dB	
Circuit Loss	-1	dB	
Received Signal Power	-20.2	dBm	
Noise Temperature	3238.3	К	
LNA NF	10.5	dB	
Earth+Sky Contribution	191.0	К	
LNA+Backend Rx	2975.7	К	
Net G/T	19.8	dB/K	
Available Eb/No	41.3	dB	
Net Req'd Eb/No	11.4	dB	
Ideal Reqd Avg Eb/No	6.4	dB	
Implementation Loss	-5	dB	
Link Margin	30.0	dB	

- Original link budget booked -61 dB/km for gaseous atmospheric losses based on ITU reference standard atmosphere
- Weather measurements taken during testing predicted a loss of -9.6 dB/km due to favorably low humidity
 - 22% during demo, 15% during long range testing

Weather Station

Slide 28

IEE

2020 IEEE Radio and Wireless Symposium proved for Public Release; Distribution Unimited Public Release; Dist

Demo Overview (Short range)

Link Details:

- 234 M Range
- Receiver initially saturated
- Rotated receive horn by 90 degrees to receive Cross-Polarization and reduce receive power

CW Mode Receiver Output*

*Note that TWT is operated in pulsed mode

2020 IEEE Radio and Wireless Symposium Approved for Public Release; Distribution imited Distan 28851; NGAS Case 17-2377

TΧ

RX

Results (Short Range)

 Successfully received and demodulated QPSK and 16-APSK

2020 IEEE Radio and Wireless Symposium Approved for Public Release; Distribution imited Distan 28851; NGAS Case 17-2377

Long Range Results

Link Details:

- 600 M Range
- Receive and Transmit each deployed in a trailer
- Received power ~ 20 dB lower after flipping polarization of horn to Co-Polarization
- Note transmit mixer was swapped after power outage due to component failure

*Note that TWT is operated in pulsed mode

Conclusion

- Technology capable of operating above 100 GHz has improved significantly over last 20 years
- InP technology could be useful for the backbone of the Internet of Things
 - Gbps class Leo-Leo crosslink
 - Air-to-Air crosslinks
 - Air-to-space crosslink
- Other (demonstrated) backbone applications include high data rate point-to-point in the 100-300 GHz range

