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Some DoD Concerns:
• Privacy – getting data to right people
• Security – TS, SCI
• Attacks – not just cyber
• Volume of Data

• Processing – autonomous operation
• Management – time critical
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Millimeter-wave Benefits and Challenges
Application Benefits Challenges

Communications Large channel capacity (data 
throughput), high directionality, low 
probability of detection and intercept, 
spectrum availability

Efficiency, control components, passives, 
atmospheric losses (upper mm-wave)

Radar (Active Imaging) High resolution, high directionality,  
“see” through dust, smoke, etc.

Atmospheric losses (upper mm-wave), 
power, efficiency

Electronic Warfare Counter to emerging threats (exploiting 
5G and other commercial technologies)

High bandwidth, control components, 
passives, power, efficiency

Passive Imaging High resolution, high directionality, 
“see” through dust, smoke, etc.

Atmospheric losses (upper mm-wave)

Power Transmission Narrow beamwidth, high directionality Efficiency

Directed Energy 
Weapon

Narrow beamwidth, high directionality, 
more difficult to harden against

Power, efficiency, electric field 
breakdown, power supply, control 
components, passives, frequency agility
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Channel Capacity Advantage at mm-waves
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Shannon Channel Capacity:
C = B log2(1 + SNR)

• B = Bandwidth (Hz)
• SNR assumes:

• 75mm x 75 mm aperture
• 5 km range
• 30° slant angle

Mark Rosker, Engineering the Ideal Array, DARPA Microsystem Technology Symposium, 5 March 2007, https://apps.dtic.mil/dtic/tr/fulltext/u2/a503723.pdf
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Meeting the Challenges

Canonical System

…100110101011…

Affordability, Agility, Adaptability, 
Linearity, Low Loss, Reconfigurability, 

Wideband

Affordability,
Autonomy, 

Computational 
horsepower, 

Efficiency, 
Machine 
learning, 

Networkability, 
Non-von-
Neumann 

architectures

Affordability, Dynamic range, Efficiency, High 
power, Linearity, Low noise, Sensitivity, Shared 

aperture

Dynamic,
Interference, 

Jamming, 
Noise, 

Wideband
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Vacuum Electron Device Components

Major Challenges:
• Tolerances of TWT circuits
• High power circuit microfabrication
• Low emittance electron beam generation
• Electron beam transport 
• Wideband vacuum windows
• Resistance to oscillation at high gain
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TWT Circuit Additive Manufacturing Approaches

photoresist(a)

activated
resist(b) (c)

electroformed
copper

beam 
tunnel

(d)

all-copper circuit

1. UV lithography and copper electroforming (UV-LIGA): 

3D-printed split block(a) Cu-plated split block(b)

assembled circuit

(c)

3. Direct 3D printing, with surface electroplating:

2. 3D-printed mold electroforming (3D-PriME)
• Build circuit form using 3D printer rather than UV lithography

Alan Cook, et.al., IEEE Access Vol. 7, p. 72561-72566 (2019)
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TWT Circuit Additive Manufacturing

W-band serpentine waveguide 
traveling-wave circuit fabricated 
by 3D printer, after Cu 
electroplating:
(a) Half of split-block circuit, top view.
(b) Detail view of circuit; fine 

corrugations in waveguide wall due 
to 3D-printed layers are visible.

(c) Bottom half of split block, 
containing two circuits, integrated 
waveguide transitions, and 
alignment holes.

(d) WR10 waveguide opening when 
split block is assembled.

Circuit #1

Circuit #2

Alan Cook, et al., IEEE Access Vol. 7, 
p. 72561-72566 (2019)
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WBG and Ultra-WBG mm-Waves Materials

Material Bandgap 
(eV)

N-type 
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P-type 
Doping Alternatives?

SiC (4H) 3.2 ü ü ?

GaN 3.4 ü Limited Polarization Doping

β-Ga2O3 4.9 ü X ?

ε-Ga2O3 4.9 ? ? Polarization Doping

Diamond 5.5 X ü Transfer Doping

AlN 6.2 Limited X Polarization Doping

c-BN 6.4 Si: 0.24 eV Be: 0.2 eV ?
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Now that GaN is replacing GaAs, what are the candidate technologies for the next generation?
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WBG and Ultra-WBG mm-Waves Materials
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Plasma-assisted nitride molecular beam epitaxy:

3” Nitride MBE
M. Hardy, et al., IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP 2018), July 16-18, 2018, Ann Arbor, MI, USA
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Development of ScAlN for mm-Wave Transistors

Sheet charge density (ns) for HEMTs with various 
barrier layer materials as a function of barrier 

thickness. The simulated structure includes the barrier 
layer and GaN channel.

Measured sheet carrier density (ns) for HEMT 
structures with varying Sc0.18Al0.82N barrier thickness. 
The simulated carrier density for is shown as a solid 
line. Mobility for each sample is shown next to the 

corresponding ns data point.

(a) XRD 0002 2θ/ω linescan and simulation.
(b) XPS spectra showing the Sc3p, Al2p and N1s peaks.
(c) Cross-sectional STEM of a ScAlN-barrier HEMT 

structure having an ~ 8-nm-thick barrier.

M. Hardy, et al., IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP 2018), July 16-18, 2018, Ann Arbor, MI, USA
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Simultaneous Transmit and Receive
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The Signal Processing Electronic Attack RFIC (SPEAR) system:
• High performance antennas
• RFIC system on a chip
• Digital signal processing

Signal Processing Electronic Attack RFIC (SPEAR) Time snapshot results with adaptive cancellation: a 
communications signal and a chirp signal (purple) are 

clearly detected despite the simultaneous 
transmission (blue) over a 700 MHz bandwidth

L. Boglione, STAR Performance with SPEAR (Signal Processing Electronic Attack RFIC)
https://apps.dtic.mil/dtic/tr/fulltext/u2/1042246.pdf



DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. 26-27 January 2020RWW2020: IoT Vertical and Topical Summit 14

Phase Change Material Based Switches

Navy systems require:
• reconfigurability
• adaptability, and
• ability to perform many functions,
creating demand for broadband, low-loss, high 
dynamic range switches

2-Terminal • Phase transition occurs due to 
direct Joule heating

• Simpler design and fabrication
• More complex circuit/system 

implementation
• Very low length (thickness) to 

area ratio leading to very low ON 
state loss but poor OFF state 
isolation

4-Terminal• Phase transition occurs due to 
indirect Joule heating

• More complex design & fabrication
• Simpler circuit/system 

implementation
• Higher length to area ratio leading 

to high OFF state isolation, 
sufficiently low ON state loss 
achievable

J. Champlain, IEEE MTT-S International Microwave Workshop Series on Advanced Materials and 
Processes (IMWS-AMP 2017), 20-22 September 2017, Pavia, Italy
El-Hinnawy et al., CS MANTECH Conf (2014), Denver, CO USA
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Phase Change Material Based Switches

GeTe RF Switch (NGES/NRL collaboration)
• Zero standby power consumption
• Exceptionally broadband: fRC > 10 THz
• Linear: TOI > 65 dBm

GeTe RF Switch (NGES/NRL collaboration)
• Extremely low insertion loss: < 0.1 dB @ 10 GHz, < 0.3 dB @ 40 GHz
• IC compatible: back-end-of-line process compatible with various 

semiconductor technologies

J. Champlain, IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes (IMWS-AMP 2017), 20-22 September 2017, Pavia, Italy
El-Hinnawy et al., CS MANTECH Conf (2014), Denver, CO USA
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Heterogeneous Integration at the Device Level

Compact
RF Substrate

Barium strontium titanate (BST)
– 50X increase in dielectric 
constant and 3:1 tunability 

Antimonide-based compound semiconductors 
(ABCS) – III-V with 10X reduction in power 
consumption

GaN – 10X increase in 
output power density 

Enable rapid prototyping and superior hybrid 
performance of RF ICs via heterogeneous integration 
of pre-fabricated devices using microassembly 
techniques à Use best material for right function 
(performance), quickly (time) and affordably

Cannot intimately combine various DoD-developed RF device 
technologies or select substrate material (mixed signal)

Performance

Lack of rapid prototyping: Slow development time of new 
technologies and designs for RFICs and MMICs

Example: DoD-funded program, where contractor spent:
5 months for design

+
10 months for validation lot

=
1.25 year design cycle

and performance not met due to lot-to-lot variation!

Time

D. J. Meyer, et. al., 236th ECS Meeting, October 13-17, 2019, Atlanta, GA
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Heterogeneous Integration at the Device Level

• Pattern photoresist anchors, 
tethers, and protective mask

• Etch sacrificial layer

• Standard device processing
• Isolate device to substrate

• Pick up device with 
polymer stamp

• Print (place) device
• Remove photoresist

• Pattern metal interconnects

D. J. Meyer, et. al., 236th ECS Meeting, October 13-17, 2019, Atlanta, GA
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Heterogeneous Integration at the Device Level

More recent results for MOCVD Ga-polar 
GaN HEMTs (collaboration with Qorvo)
• 99% release yield
• Improved ohmic alloy contact resistance of 0.5 Ohm-

mm
• Maximum drain current > 1 A/mm
• Low gate leakage current after SiNx passivation 
• New mask set with devices optimized for lift-off
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Initial results for MBE N-polar GaN HEMTs:
• Electrical performance similar before lift-off and after 

transfer to SiC (up to 8 W/mm of dissipated power)
• Insufficient bond strength between device and inter-layer 

dielectric (ILD) to overcome effect of curvature
• Several strategies for improving planarity including 

reducing alloyed contact area were successful

D. J. Meyer, et. al., 236th ECS Meeting, October 13-17, 2019, Atlanta, GA
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Memristive Neuromorphic Computing Elements

Fundamental Challenges Facing AI and other Next-Gen Computing:

5’8”,  126 lbs. 20 W

Compute unit

50-100 m3, 300 kW

VS.

• Great need and widespread applications for AI
• Limitations of CMOS-based AI (current SOA)

• Von Neumann bottleneck
• End of Moore’s Law scaling
• Massive amount of computation required for Deep 

Learning

à Unsustainably large size, weight, and power 
(SWaP) expenditure for AI hardware 

• Need for new HW devices for AI with low SWaP 
envelope 

• DON and DoD currently operate systems that are:
• mobile, unmanned, remote, and off-the-grid
• with severe limits on payload (SWaP)

H. Cho, et. al., Nano Korea, July 2-5, 2019, Ilsan, Korea



DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. 26-27 January 2020RWW2020: IoT Vertical and Topical Summit 20

Memristive Neuromorphic Computing Elements

Nanoelectronic Spiking Neuron
• a functional unit device with
• components based on memristors (not CMOS) to 
• form the basis of neuromorphic computing hardware with 
• far less size, weight, and power (SWaP) than is possible with conventional 
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H. Cho, et. al., Nano Korea, July 2-5, 2019, Ilsan, Korea
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Memristive Neuromorphic Computing Elements

Pulse inputs 
(outputs of 

other neurons) 
sum and can 

fire spike train 

S1

CS1

Vi1

S2

CS2

Vi2

S3

CS3

Vi3

+VDC puts M2
near threshold

-VDC puts M1
near threshold

RS2

RS1

RS3

Single Neuron With Single Input

1) Supply input voltage pulse (green) 
to synapse.

2) Record output (blue).

VDC = 1.75V
RL1 = 1.3kW
RL2 = 15kW
RS = 15kW
CM1 = 32pF = 4CM2

CS = 1.5pF

Simulation of Neuron Equivalent Circuit

H. Cho, et. al., Nano Korea, July 2-5, 2019, Ilsan, Korea
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• Total IoT spending in 2019 ~ $726B
• Total Navy Research, Development, Test & Evaluation budget (across all disciplines) ~ $20B
• Navy must:

• Carefully invest in technologies that address specific Navy needs not addressed by 
commercial requirements

• Leverage to maximum extent possible commercial developments 
• NRL must:

• Continue its role as the Navy’s corporate laboratory
• Pursue high-risk, high-payoff concepts that address warfighter needs in the IoT age
• Engage and collaborate with commercial interests to rapidly transition technologies
• Maintain a world-class workforce of scientists and engineers addressing critical military 

technology “gaps”

Conclusions
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Comparison TWT/MPM and GaN MMIC

232-235 GHz, L3

94-102 GHz, BVERI

34-35 GHz, CPI

Teledyne SSPA

27-31 GHz, Qorvo
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Comparison TWT/MPM and GaN MMIC

81-86 GHz, L3

Q-band, L3

30-31 GHz, CPI

34-37 GHz, 
Custom MMIC

27-31 GHz, Qorvo


