

Millimeter-wave Research at NRL in the IoT Age

RWW2020: IoT Vertical and Topical Summit

Baruch Levush (baruch.levush@nrl.navy.mil) & Jeff Pond (jeff.pond@nrl.navy.mil) Electronics Science and Technology Division, Code 6800 Naval Research Laboratory, Washington, DC 20375

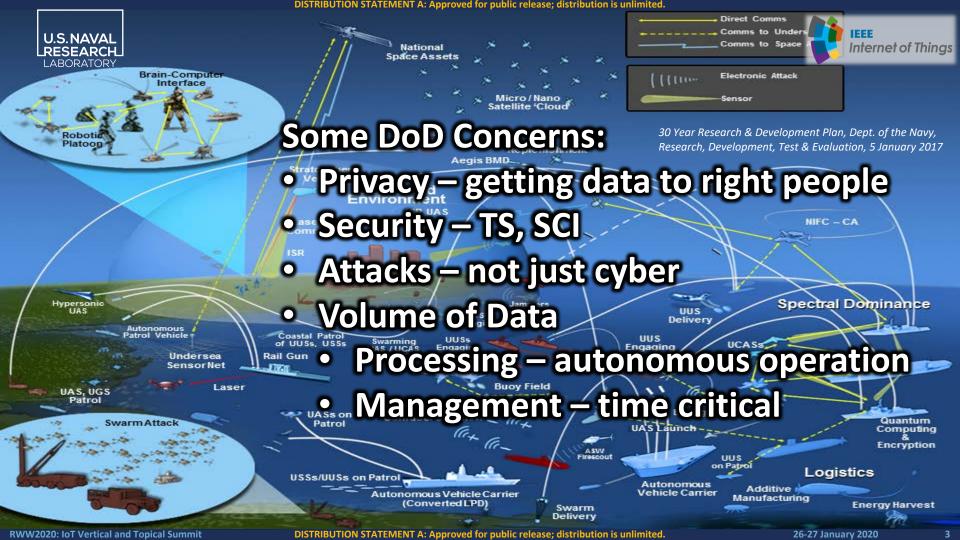
Acknowledgements:

Luciano Boglione, Jeff Calame, James Champlain, Hans Cho, Alan Cook, Brian Downey, Matt Hardy, Colin Joye, D. Scott Katzer, Shawn Mack, David Meyer, Laura Ruppalt

RWW2020: IoT Vertical and Topical Summit

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

Some IoT Concerns: Privacy Security Attacks Volume of Data Processing Management


RWW2020: IoT Vertical and Topical Summit

U.S.NAVAL

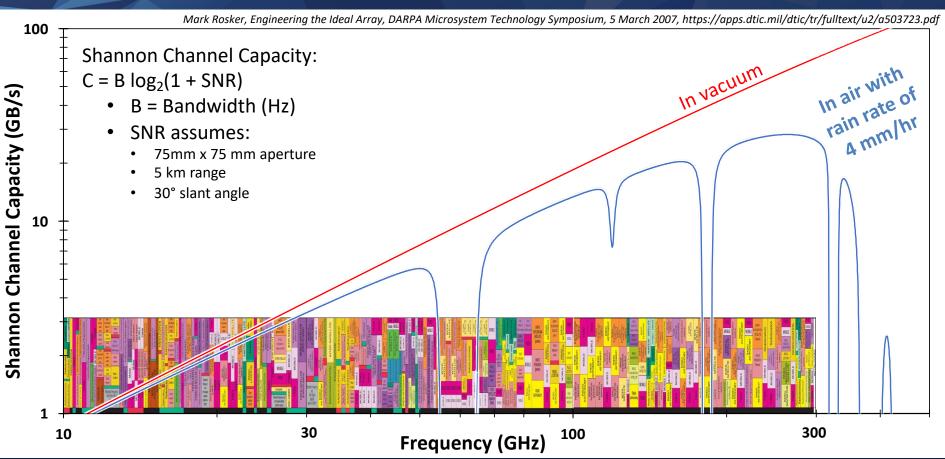
RESEARCH

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

26-27 January 2020

Millimeter-wave Benefits and Challenges

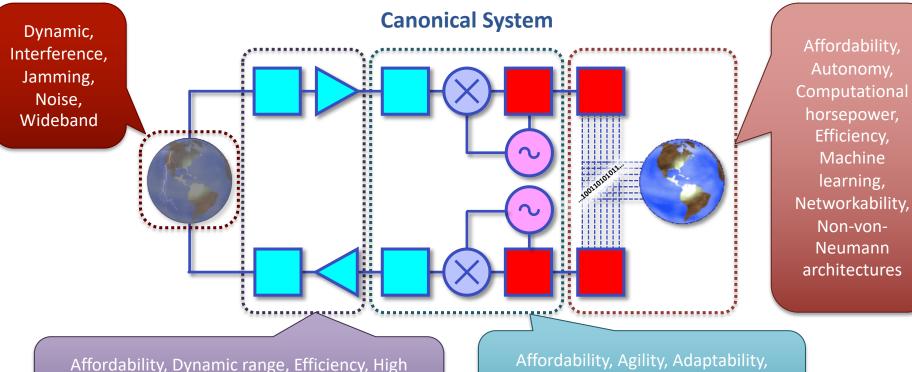
U.S.NAVAL


Application	Benefits	Challenges	
Communications	Large channel capacity (data throughput), high directionality, low probability of detection and intercept, spectrum availability	Efficiency, control components, passives, atmospheric losses (upper mm-wave)	
Radar (Active Imaging)	High resolution, high directionality, "see" through dust, smoke, etc.	Atmospheric losses (upper mm-wave), power, efficiency	
Electronic Warfare	Counter to emerging threats (exploiting 5G and other commercial technologies)	High bandwidth, control components, passives, power, efficiency	
Passive Imaging	High resolution, high directionality, "see" through dust, smoke, etc.	Atmospheric losses (upper mm-wave)	
Power Transmission	Narrow beamwidth, high directionality	Efficiency	
Directed Energy Weapon RWW2020: IoT Vertical and Topical Summit	Narrow beamwidth, high directionality, more difficult to harden against	Power, efficiency, electric field breakdown, power supply, control components, passives, frequency agility ution is unlimited. 26-27 January 2020 4	

U.S. NAVAL RESEARCH

Channel Capacity Advantage at mm-waves

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.


RWW2020: IoT Vertical and Topical Summit

U.S.NAVAL RESEARCH LABORATORY

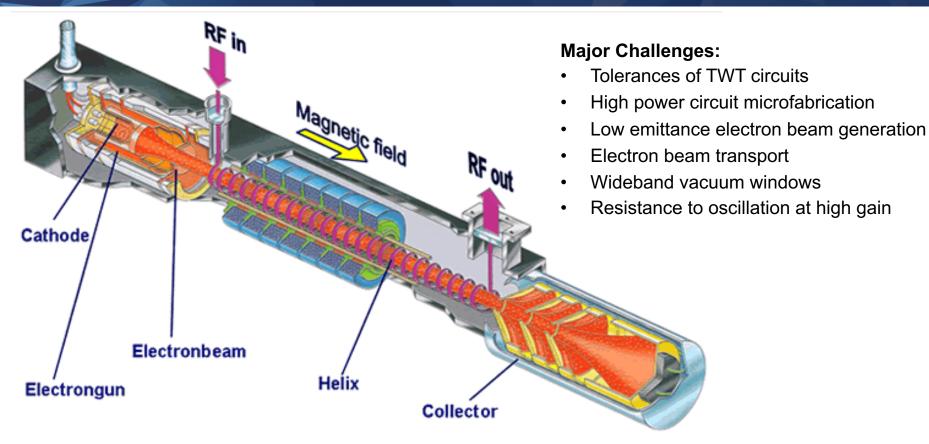
DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

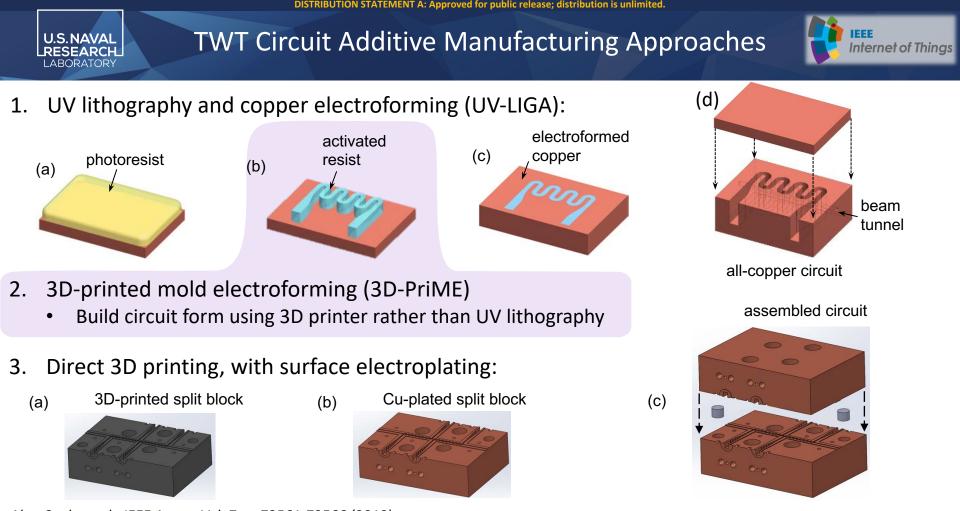
Meeting the Challenges

power, Linearity, Low noise, Sensitivity, Shared aperture Affordability, Agility, Adaptability, Linearity, Low Loss, Reconfigurability, Wideband

RWW2020: IoT Vertical and Topical Summit

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.


26-27 January 2020


U.S. NAVAL RESEARCH

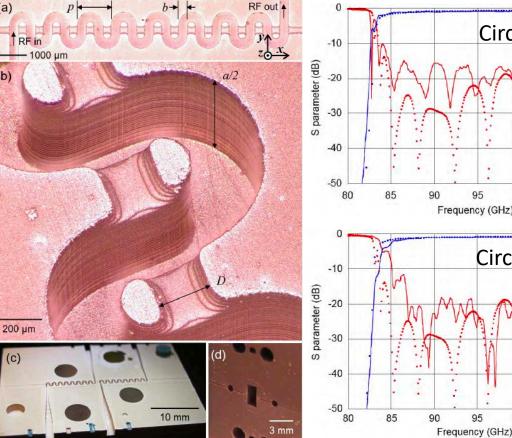
Vacuum Electron Device Components

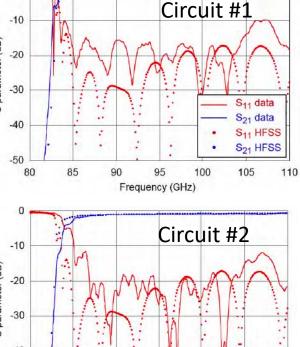
DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

Alan Cook, et.al., IEEE Access Vol. 7, p. 72561-72566 (2019)

U.S.NAVAL RESEARCH LABORATORY

TWT Circuit Additive Manufacturing


(a)


DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

- W-band serpentine waveguide traveling-wave circuit fabricated by 3D printer, after Cu electroplating:
- Half of split-block circuit, top view. (a)
- (b) Detail view of circuit; fine corrugations in waveguide wall due to 3D-printed layers are visible.
- Bottom half of split block, (c) containing two circuits, integrated waveguide transitions, and alignment holes.
- (d) WR10 waveguide opening when split block is assembled.

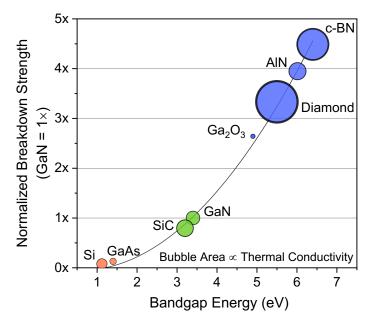
Alan Cook, et al., IEEE Access Vol. 7, p. 72561-72566 (2019)

100

95

110

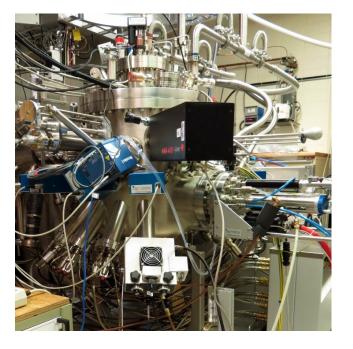
105



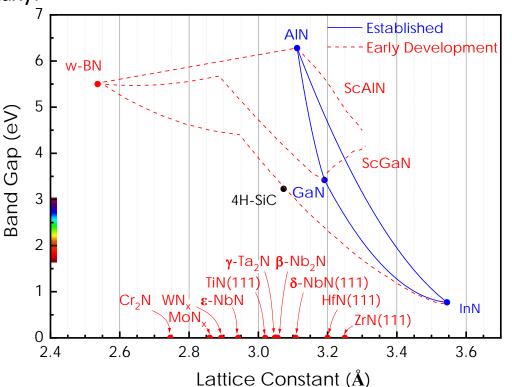
WBG and Ultra-WBG mm-Waves Materials

Now that GaN is replacing GaAs, what are the candidate technologies for the next generation?

	Material	Bandgap (eV)	N-type Doping	P-type Doping	Alternatives?
WBGS	SiC (4H)	3.2	>	*	?
	GaN	3.4	*	Limited	Polarization Doping
	β-Ga ₂ O ₃	4.9	×	X	?
UWBGS	ε-Ga ₂ O ₃	4.9	?	?	Polarization Doping
	Diamond	5.5	x	~	Transfer Doping
	AIN	6.2	Limited	x	Polarization Doping
	c-BN	6.4	Si: 0.24 eV	Be: 0.2 eV	?

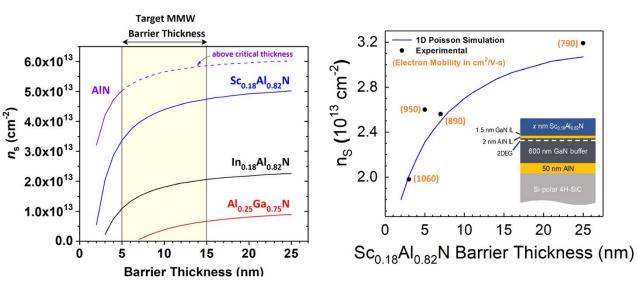


WBG and Ultra-WBG mm-Waves Materials


DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

Plasma-assisted nitride molecular beam epitaxy:

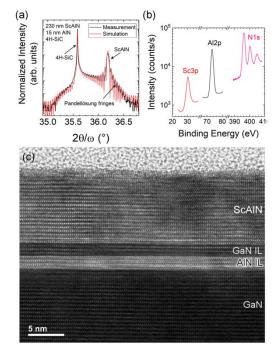
3" Nitride MBE


M. Hardy, et al., IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP 2018), July 16-18, 2018, Ann Arbor, MI, USA

U.S.NAVAL RESEARCH LABORATORY

Development of ScAIN for mm-Wave Transistors

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.



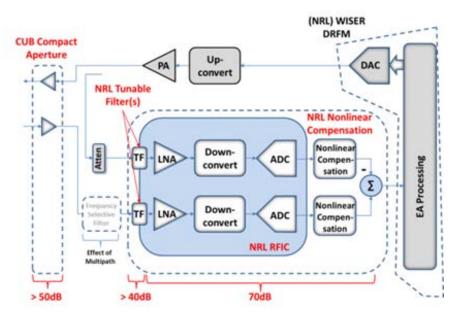
Sheet charge density (ns) for HEMTs with various barrier layer materials as a function of barrier thickness. The simulated structure includes the barrier layer and GaN channel.

Measured sheet carrier density (n_s) for HEMT structures with varying Sc_{0.18}Al_{0.82}N barrier thickness. The simulated carrier density for is shown as a solid line. Mobility for each sample is shown next to the corresponding n_s data point.

25

- XRD 0002 $2\theta/\omega$ linescan and simulation. (a)
- XPS spectra showing the Sc3p, Al2p and N1s peaks.
- Cross-sectional STEM of a ScAIN-barrier HEMT (c) structure having an ~ 8-nm-thick barrier.

M. Hardy, et al., IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP 2018), July 16-18, 2018, Ann Arbor, MI, USA


U.S.NAVAL RESEARCH LABORATORY

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

Simultaneous Transmit and Receive

Signal Processing Electronic Attack RFIC (SPEAR)

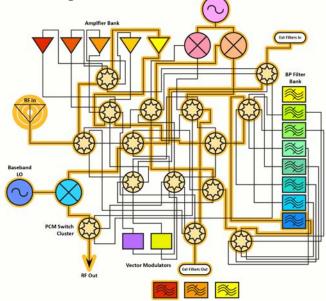
The Signal Processing Electronic Attack RFIC (SPEAR) system:

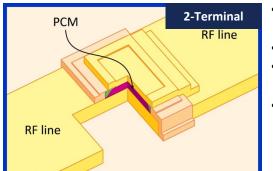
- High performance antennas
- RFIC system on a chip
- Digital signal processing

Time snapshot results with adaptive cancellation: a communications signal and a chirp signal (purple) are clearly detected despite the simultaneous transmission (blue) over a 700 MHz bandwidth

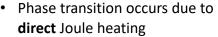
L. Boglione, STAR Performance with SPEAR (Signal Processing Electronic Attack RFIC) https://apps.dtic.mil/dtic/tr/fulltext/u2/1042246.pdf

13

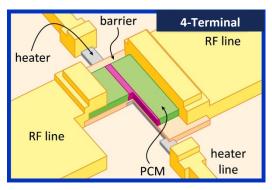

Phase Change Material Based Switches



Navy systems require:


- reconfigurability
- adaptability, and
- ability to perform many functions,
- creating demand for broadband, low-loss, high

dynamic range switches



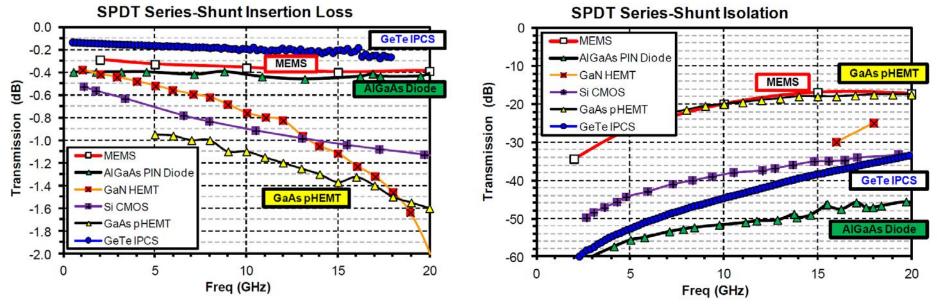
- Phase transition occurs due to indirect Joule heating
- More complex design & fabrication
- Simpler circuit/system implementation
- Higher length to area ratio leading to high OFF state isolation, sufficiently low ON state loss achievable

- Simpler design and fabrication
- More complex circuit/system implementation
- Very low length (thickness) to area ratio leading to very low ON state loss but poor OFF state isolation

J. Champlain, IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes (IMWS-AMP 2017), 20-22 September 2017, Pavia, Italy El-Hinnawy et al., CS MANTECH Conf (2014), Denver, CO USA

U.S. NAVAL RESEARCH LABORATORY

Phase Change Material Based Switches


DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

GeTe RF Switch (NGES/NRL collaboration)

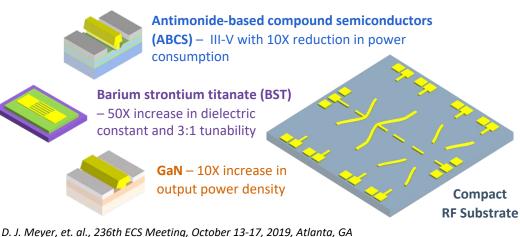
- Zero standby power consumption
- Exceptionally broadband: $f_{RC} > 10$ THz
- Linear: TOI > 65 dBm

- Extremely low insertion loss: < 0.1 dB @ 10 GHz, < 0.3 dB @ 40 GHz
- IC compatible: back-end-of-line process compatible with various semiconductor technologies

J. Champlain, IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes (IMWS-AMP 2017), 20-22 September 2017, Pavia, Italy EI-Hinnawy et al., CS MANTECH Conf (2014), Denver, CO USA

RWW2020: IoT Vertical and Topical Summit

Heterogeneous Integration at the Device Level


Enable rapid prototyping and superior hybrid performance of RF ICs via heterogeneous integration of *pre-fabricated devices* using microassembly techniques \rightarrow Use best material for right function (performance), quickly (time) and affordably

Time

Lack of rapid prototyping: Slow development time of new technologies and designs for RFICs and MMICs Example: DoD-funded program, where contractor spent: 5 months for design

10 months for validation lot

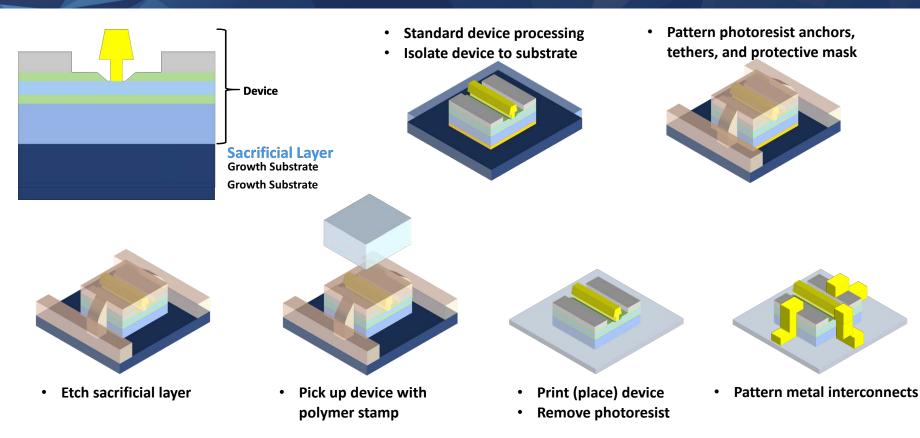
1.25 year design cycle and performance not met due to lot-to-lot variation!

Performance

Cannot intimately combine various DoD-developed RF device technologies or select substrate material (mixed signal)

Material	Digital Processing	Output Power	Noise and linearity
Si or SiGe	~	×	×
GaN	×	~	×
III-V's	×	×	\checkmark

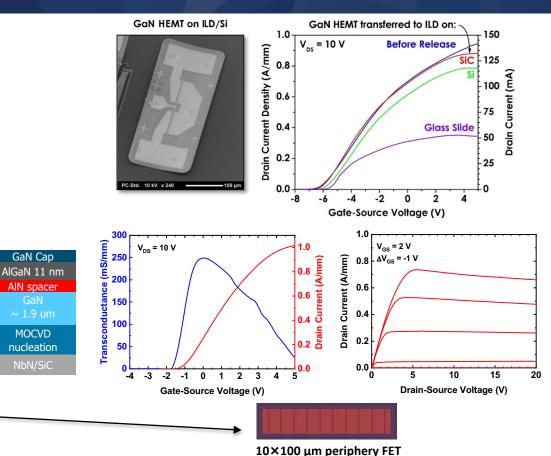
RWW2020: IoT Vertical and Topical Summit


DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

U.S.NAVAL RESEARCH

Heterogeneous Integration at the Device Level

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.


D. J. Meyer, et. al., 236th ECS Meeting, October 13-17, 2019, Atlanta, GA

Heterogeneous Integration at the Device Level

Initial results for MBE N-polar GaN HEMTs:

- Electrical performance similar before lift-off and after transfer to SiC (up to 8 W/mm of dissipated power)
- Insufficient bond strength between device and inter-layer dielectric (ILD) to overcome effect of curvature
- Several strategies for improving planarity including reducing alloyed contact area were successful

More recent results for MOCVD Ga-polar GaN HEMTs (collaboration with Qorvo)

99% release yield

U.S. NAVAL

RESEARCH _ABORATORY

- Improved ohmic alloy contact resistance of 0.5 Ohmmm
- Maximum drain current > 1 A/mm
- Low gate leakage current after SiN_x passivation
- New mask set with devices optimized for lift-off

D. J. Meyer, et. al., 236th ECS Meeting, October 13-17, 2019, Atlanta, GA

GaN Cap

MOCVD

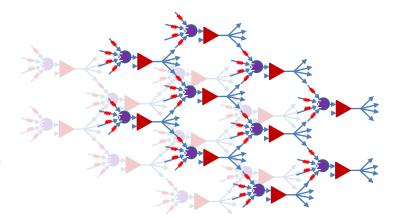
U.S. NAVAL RESEARCH

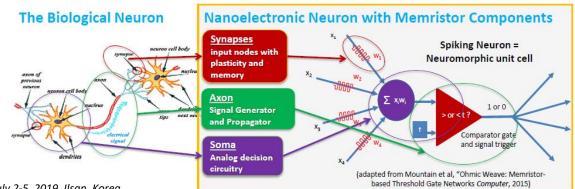
Memristive Neuromorphic Computing Elements

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

Fundamental Challenges Facing AI and other Next-Gen Computing:

- Great need and widespread applications for AI
- Limitations of CMOS-based AI (current SOA)
 - Von Neumann bottleneck
 - End of Moore's Law scaling
 - Massive amount of computation required for Deep Learning
 - → Unsustainably large size, weight, and power (SWaP) expenditure for AI hardware
- Need for new HW devices for AI with low SWaP envelope
- DON and DoD currently operate systems that are:
 - mobile, unmanned, remote, and off-the-grid
 - with severe limits on payload (SWaP)
- H. Cho, et. al., Nano Korea, July 2-5, 2019, Ilsan, Korea



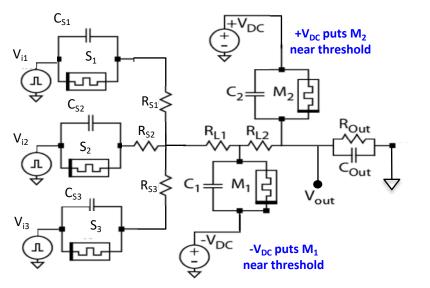

Memristive Neuromorphic Computing Elements

Nanoelectronic Spiking Neuron

- a functional unit device with
- components based on memristors (not CMOS) to
- form the basis of neuromorphic computing hardware with
- far less size, weight, and power (SWaP) than is possible with conventional hardware
 - Solid-state neuron components
 - 1. Synapse : memory and learning → memristor junction
 - 2. Axon : spiking → neuristor
 - 3. Soma : decision circuit → multi-input crossbar latch

H. Cho, et. al., Nano Korea, July 2-5, 2019, Ilsan, Korea

Memristive Neuromorphic Computing Elements



Simulation of Neuron Equivalent Circuit

Pulse inputs (outputs of other neurons) sum and can fire spike train

U.S.NAVAL

RESEARCH LABORATORY

Single Neuron With Single Input

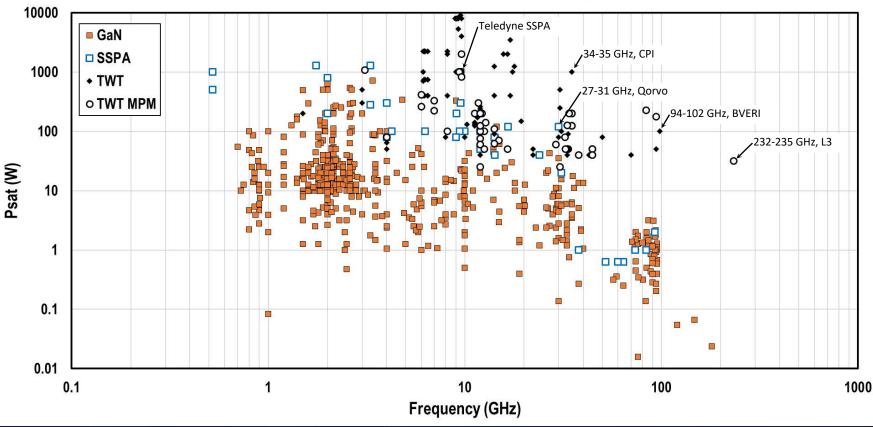
- 1) Supply input voltage pulse (green) to synapse.
- 2) Record output (blue).

H. Cho, et. al., Nano Korea, July 2-5, 2019, Ilsan, Korea

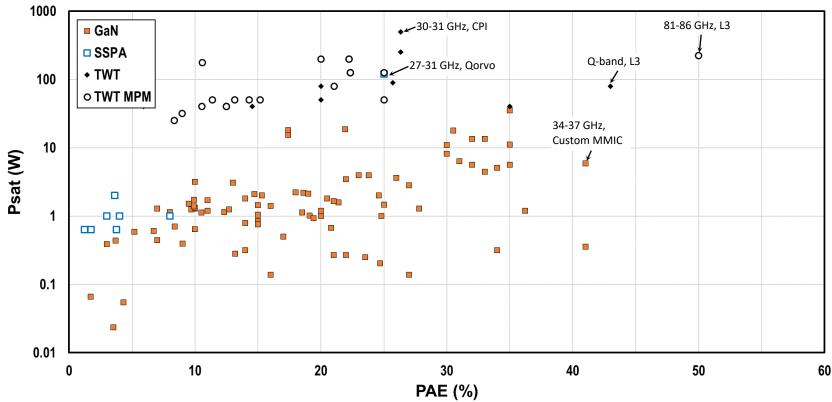
U.S. NAVAL RESEARCH LABORATORY

Conclusions

- Total IoT spending in 2019 ~ \$726B
- Total Navy Research, Development, Test & Evaluation budget (across all disciplines) ~ \$20B
- Navy must:
 - Carefully invest in technologies that address specific Navy needs not addressed by commercial requirements
 - Leverage to maximum extent possible commercial developments
- NRL must:
 - Continue its role as the Navy's corporate laboratory
 - Pursue high-risk, high-payoff concepts that address warfighter needs in the IoT age
 - Engage and collaborate with commercial interests to rapidly transition technologies
 - Maintain a world-class workforce of scientists and engineers addressing critical military technology "gaps"


22

Comparison TWT/MPM and GaN MMIC


Saturated Output Power vs. Frequency

Comparison TWT/MPM and GaN MMIC

≥ 30 GHz, Psat vs. PAE

U.S. NAVAL

RESEARCH LABORATORY